Phenotypic heterogeneity and instability of human ovarian tumor-initiating cells.
نویسندگان
چکیده
The cancer stem cell (CSC) model proposes that tumors have a hierarchical organization in which only some cells indefinitely self-renew and thereby sustain tumor growth. In addition, the CSC model requires that tumor-initiating cells (TICs) be prospectively isolatable on the basis of their phenotype. Previous studies have suggested that serous ovarian cancer (SOC) conforms to the CSC model, but these used arguably nonfidelitous immortalized cell lines, cultured primary cells, or passaged xenografts as the source of tumor cells. We developed a robust assay for quantifying TICs from primary SOC. Using this assay, we find that TICs are rare when assayed in either NOD/SCID or NOD/SCID/IL2Rγ(-/-) (NSG) mice. TIC frequency (TICf) varies substantially between patients, although it is similar in primary ovarian masses and omental metastases, suggesting that TICf is an intrinsic property of ovarian tumors. CD133 marks all TICs from several primary SOC cases. However, in other cases, substantial TIC activity is found in both the CD133(+) and CD133(-) fractions, whereas still other cases have exclusively CD133(-) TICs. Furthermore, the TIC phenotype can change in xenografts: primary tumors in which all TICs are CD133(+) can give rise to xenografts that contain substantial numbers of CD133(-) TICs. Our results highlight the need for quantitative rigor in the evaluation of TICs and for caution when using passaged xenografts for such studies. Furthermore, although our data suggest that SOC conforms to the CSC hypothesis, the heterogeneity of the TIC phenotype may complicate its clinical application.
منابع مشابه
Niche-Dependent Gene Expression Profile of Intratumoral Heterogeneous Ovarian Cancer Stem Cell Populations
Intratumoral heterogeneity challenges existing paradigms for anti-cancer therapy. We have previously demonstrated that the human embryonic stem cells (hESC)-derived cellular microenvironment in immunocompromised mice, enables functional distinction of heterogeneous tumor cells, including cells which do not grow into a tumor in a conventional direct tumor xenograft platform. We have identified a...
متن کاملElucidation of molecular and functional heterogeneity through differential expression network analyses of discrete tumor subsets.
Intratumor heterogeneity presents a major hurdle in cancer therapy. Most current research studies consider tumors as single entities and overlook molecular diversity between heterogeneous state(s) of different cells assumed to be homogenous. The present approach was designed for fluorescence-activated cell sorting-based resolution of heterogeneity arising from cancer stem cell (CSC) hierarchies...
متن کاملAssessment of Antitumor Activity of Vinca herbacea on Human Ovarian Cancer Cell Line
Background: It seems that Vinca. herbacea has an anti-tumor effect. Here, the immunotherapeutic effect of this compound is assessed against human ovarian cancer (SKOV3) cells because of the high incidence of this tumor in women. Materials and Methods: The cytotoxic activity of V. herbacea extract against human ovarian cancer (SKOV3) cells was determined by MTT assay. The apoptosis-inducing pote...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملHuman Cancer Modeling: Recapitulating Tumor Heterogeneity Towards Personalized Medicine
Despite diagnostic, preventive and therapeutic advances, growing incidence of cancer and high rate of mortality among patients affected by specific cancer types indicate current clinical measures are not ideally useful in eradicating cancer. Chemoresistance and subsequent disease relapse are believed to be mainly driven by the cell-molecular heterogeneity of human tumors that necessitates perso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 16 شماره
صفحات -
تاریخ انتشار 2011